
1

AINTEC
short course on:

SECURITY
iin

Mobile/Wireless Networks

November 16-17, 2008

G T dik

1

Gene Tsudik

Computer Science Department
University of California, Irvine

gts*AT*ics.uci.edu
http://www.ics.uci.edu/~gts

http://sconce.ics.uci.edu

OUTLINE

6-hour short course:

1 I t d ti + O i (45)1. Introduction + Overview (45)
– Preliminaries in Cryptography and Security

2. Last-Hop Wireless (45)
– Security in Cellular and WLAN-type Networks
– Location Privacy

3. Secure Wireless Device Association (90)
– Human-assisted cryptographic protocols

2

– Human-assisted cryptographic protocols
4. RFID Security & Privacy (90)
5. Security in MANETs (90)

2

Expectations
• Learn about basics of security in wireless

communications/networking

• Understand the state-of-the-art

• Much of the material has to do with cryptography
and its applications

3

• Disclaimer: 6 hours is not enough!!!

• I might not cover your favorite topic, e.g., Bluetooth
security

Helpful Background

• Basic Networking
TCP/IP IP Multicast 802 11– TCP/IP, IP Multicast, 802.11,

• Network Security
– Authentication, Key distribution, Protocols,

Certification/Revocation, e.g., TLS/SSL, etc.
• Cryptography

B i ti t t i

4

– Basic encryption concepts, symmetric vs
public key, signatures, key management,
hash chains & trees, etc.

3

Helpful Background & Materials
• Computer Networking, 4/e (Chapter 8, in particular)

James Kurose, Keith Ross
ISBN: 0-321-49770-8

• Cryptography and Network Security: Principles and Practice, 3/E (textbook)
William Stallings
ISBN: 0-130-91429-0

• Network Security: Private Communication in a Public World
Charlie Kaufman, Radia Perlman, Mike Speciner
ISBN: 0 130 46019 2

5

ISBN: 0-130-46019-2

• Handbook of Applied Cryptography (good reference book, and free!)
Alfred Menezes, Paul van Oorschot and Scott Vanstone
ISBN: 0-8493-8523-7
http://www.cacr.math.uwaterloo.ca/hac/

Some statements to start with:

• Wireless-ness does not prompt new
fundamental security problems (except one)
– Most advances in wireless security are not specific toMost advances in wireless security are not specific to

wireless communication
• Mobility raises new security problems
• Ad hoc deployment/operation raises them too

• Most sensors don’t network

6

• Most sensor networks are static
• Most so-called “mobility protocols” break when

nodes move very fast or change directions often

4

Security & Cryptography
Introduction

7

Symmetric Cryptography

Also known as: conventional, shared-key or single-
keykey

• 2 parties (sender/recipient or Alice/Bob) share a
common key

• this key is used to encrypt and/or authenticate their
communication

• all “classical” encryption algorithms are symmetric

8

• all classical encryption algorithms are symmetric
• the only encryption type prior to invention of public-

key in 1970’s

5

Basic Terminology
• plaintext - the original message
• ciphertext - the encrypted message
• cipher - algorithm for transforming plaintext to ciphertext• cipher - algorithm for transforming plaintext to ciphertext
• key – secret info used in cipher, known only to appropriate

parties (e.g., sender/receiver)
• encipher (encrypt) - convert plaintext to ciphertext
• decipher (decrypt) - recover ciphertext from plaintext
• cryptography study of encryption principles/methods

9

• cryptography - study of encryption principles/methods
• cryptanalysis (codebreaking) - the study of principles/

methods of deciphering ciphertext without knowing keys
• cryptology - cryptography + cryptanalysis

Symmetric Cipher Model

Wireless channel?

10

Wireless channel?

6

Open vs. closed cipher design

• Open design: algorithm, protocol, system
design (and even possible plaintext) may be
public information. The only secret is/are
the key(s)

11

• Closed design: as much information as
possible (including the algorithm) is kept
secret

Encryption Encryption PrinciplesPrinciples

• A cipher (cryptosystem) has at least five
components:components:
– Plaintext
– Secret Key(s)
– Ciphertext
– Encryption algorithm

Decryption algorithm

12

– Decryption algorithm
• Security usually depends on the secrecy

of the key, not the secrecy of the
algorithm

7

Requirements
• two requirements for secure use of

symmetric encryption:
– a strong encryption algorithm
– a secret key known only to sender/receiver

Y = EK(X)
X = DK(Y)

• assume encryption algorithm is known to

13

• assume encryption algorithm is known to
everyone (including the adversary)

• need secure channel to distribute keys!

Cryptography

Number of keys used:

– One:
• Shared key, conventional, symmetric
• Examples: 3-DES, AES

T

14

– Two:
• Asymmetric, public key
• Examples: RSA, ElGamal

8

Adversary’s Goal

• Attack cryptosystem to
bt i / d l i t t (i l t fid ti lit)– obtain/read plaintext (violate confidentiality)

– violate authenticity and/or integrity

• This usually (but not always) requires
obtaining the secret/private KEY(s)

15

obtaining the secret/private KEY(s)

Alice, Bob and Eve (Adversary)

Encrypt decrypt

Alice Bob

Encrypt decrypt

16Eve

9

Types of Cryptanalytic Attacks:
• ciphertext only

– only knows algorithm and lots of ciphertext
but not the matching plaintextg p

• known plaintext
– knows a number of (n) plaintext/ciphertext

pairs
• chosen plaintext

– selects n plaintexts and obtains

17

selects n plaintexts and obtains
corresponding ciphertexts

• chosen ciphertext
– selects n ciphertexts and obtains

corresponding plaintexts

Types of Cryptanalytic Attacks: most
dangerous/sophisticated attacks

• adaptive chosen plaintextp p
– selects n plaintexts and obtains

corresponding ciphertexts
– repeat above a number of times

• adaptive chosen ciphertext

18

– selects n ciphertexts and obtains
corresponding plaintexts

– repeat above a number of times

10

Block Ciphers: Common Modes of Operation

• Electronic code-book (ECB)

Ci = E (K, Pi)
Local error, permutation
attack, parallel encr.

• Chained block cipher (CBC)
Ci = E (K, Ci-1 XOR Pi)

• Output feedback (OFB)
Vi = E (K, Vi-1) Ci = Pi XOR Vi

• Cipher feedback (CFB)

Need IV, error causes 2-
block loss, no parallel encr.

Stream cipher, local error,
pre-computation

Plaintext dependence

19

Cipher feedback (CFB)
Ci = Pi XOR E (K, Ci-1)

OFB/CFB - encrypt only!

• Counter Mode (CM)
same as OFB, but Vi = E (K, i)

Plaintext dependence,
avalanche effect, parallel
decryption.

More Definitions

• unconditional security
– no matter how much computer power is available, theno matter how much computer power is available, the

cipher cannot be broken, since ciphertext provides
insufficient information to uniquely determine the
corresponding plaintext

• computational security
– given state-of-the-art computing resources, the

cipher cannot be broken (today)

20

• ad hoc security
– the cipher is claimed secure; typical claim in ciphers

designed by amateurs or in “snake oil” products

11

Message & Origin Authentication

21

Message & Origin Authentication

• Goal: protection against active attacks
– Impersonation

M difi ti f t t (i t it)– Modification of contents (integrity)
– Replay
– Interruption and denial of service

• Requirements
– Message data is authentic: has integrity or has not

22

g g y
been altered

– Message source is authentic
– Optional

• Message arrived in correct sequence
• Non-repudiation

12

Message Authentication Approaches

• Conventional encryption
Assumes that only the correct parties should– Assumes that only the correct parties should
have access to key

– Does that guarantee integrity?
• Message authentication without

encryption
Authentication tag is attached to message to

23

– Authentication tag is attached to message to
verify/assert its integrity and the integrity of
the source

• Message Authentication Code (MAC)
– MAC=F(Message,Key)

Message Authentication Code

24

13

MAC Properties

• Message is authentic
– If the attacker modified the message, the MAC will most likely

t t h th l l t d b th inot match the one calculated by the receiver
• Source is authentic

– No one else has the key to generate the same MAC
• Message is in sequence and/or timely

– Should add timestamp or other nonce to the message before
calculating the MAC

25

• Any encryption algorithm can be used to generate MAC

Cryptographic HASH Functions

• Purpose: produce a fingerprint or digest of input data

P ti f “ d” HASH f ti H()• Properties of a “good” HASH function H():

1. H() takes on input of any size
2. H() produces fixed-length output
3. H(x) is easy to compute (efficient)
4. Given any h, it is computationally infeasible to find x such

26

that: H(x) = h
5. For any x, it is computationally infeasible to find y, such

that: H(y) = H(x) and y<>x
6. It is computationally infeasible to find any (x, y) such that

H(x) = H(y) and x<>y

14

HASH Functions properties restated:
Cryptographic properties of a “good” HASH
function:

– One-way-ness (#4)One way ness (#4)
– Weak Collision-Resistance (#5)
– Strong Collision-Resistance (#6)
Non-cryptographic properties of a “good” HASH
function

– Fixed output (#1)

27

Fixed output (#1)
– Arbitrary-length input (#2)
– Efficiency (#3)

Message Authentication with
a Hash Function

1. Using a symmetric secret / key

28

2. Using symmetric encryption
• Generate H(M), which is small in size
• Use EK(H(M)) as the MAC

15

Well-known HASH Algorithms

SHA-2 MD5 RIPEMD

Digest length 256,384,512 128 160
Block Size 512 512 512

steps 80 64 160

Max message 264-1 unlimited unlimited

29

Max message 2 1 unlimited unlimited

Hash Function MAC (HMAC)

• HMAC: Use a MAC derived from any cryptographic
hash function
– Note that a hash function does not use a key, and,

therefore, cannot be directly used as a MAC
• Motivations for HMAC:

– Cryptographic hash functions execute faster in software
than encryption algorithms such as DES

– No need for the reverseability of encryption

30

No need for the reverseability of encryption
– No export restrictions from the US

• Status: designated as mandatory for IPSec
– Also used in Transport Layer Security (TLS)

16

HMAC Algorithm

• Compute H1= H of the
concatenation of M and K1
To prevent an “additional• To prevent an additional
block” attack, compute
again H2= H of the
concatenation of H1 and K2

• K1 and K2 each use half
the bits of K

• Notation:
– K+ =K padded with 0’s

31

– ipad=00110110 x b/8
– opad=01011100 x b/8

• Execution:
– Same as H(M), plus 2

blocks

Public Key Crypto

32

17

Public-Key Cryptography
• Each user has a unique public-private key-pair:

Alice has KApriv, KApub
Bob has K KBob has KBpriv, KBpub

• The public key can be given to anyone

• The private key is not shared with anyone, including a
trusted third party (authentication server)

33

• The public key is a one-way function of the private-key
(hard to compute private key from public one)

• Used for key distribution/agreement, message
encryption, and digital signatures

Origins of Public Key

• Concept credited to Diffie & Hellman, 1976 “New Directions
in Cryptography”yp g p y
– Not the first public key method (Merkle’s puzzles is the first)

• Motivation – allow Alice to send a message to Bob without a
pre-shared secret or a mutually-trusted Third Party;
– called “public-key” because Alice & Bob need only exchange public

keys to set up a secret channel

34

• Invented earlier by the British at CESG:
http://www.cesg.gov.uk/about/nsecret.htm

18

35

Public-Key Agreement
• Alice and Bob want to agree on a secret key to

use with a symmetric encryption algorithm, e.g.,
3-DES or AES3 DES or AES
– Need a shared secret

• Do this after exchanging only public keys

• Each computes a secret session key K derived
f th i i t k d th th ’ bli

36

from their own private key and the other’s public
key. Both compute the same K independently

19

Diffie-Hellman Method

1) Shared prime p and generator g in (Zp)

Ali i t d bli Xa dAlice: private xa and public ya = gXa mod p
Bob: private xb and public yb = gXb mod p

xa = logg ya mod p (hard to compute)

2) They exchange public keys

37

Alice computes: K = yb
Xa mod p = gXb Xa mod p

Bob computes: K = ya
Xb mod p = gXa Xb mod p

What can K be used for?

Hybrid Approach

• Alice & Bob generate xa, xb and deposit/publish
their public keys ya, yb

• Alice gets yb from database (or from Bob)
• Alice generates temporary pair xt, yt

• Alice computes K = yb
Xt mod p = gXb Xt mod p

• Alice Bob: yt, EK(M)

38

Alice Bob: yt, EK(M)

• Bob computes K = yt
Xb mod p = gXt Xb mod p

and decrypts M

20

Public-Key Encryption

• Public key to encrypt messages
Private key to decrypt

• Alice encrypts message to Bob with Bob’s public key
• Bob decrypts incoming messages with his private key
• In practice, public-key encryption is used to

encrypt/decrypt symmetric keys (e.g., AES), and the

39

encrypt/decrypt symmetric keys (e.g., AES), and the
latter are then used to encrypt/decrypt bulk data

Sending Messages

To send message M to Bob, only Bob’s keys used
Alice Bob: C = EBpub(M)
B b d t M D (C)Bob decrypts: M = DBpriv(C)

In practice, use to distribute symmetric key K
Alice Bob: CK = EBpub(K), CM = EK(M)
Bob decrypts: K = DBpriv(CK), M = DK(CM)

40

Alice and Bob then use K to encrypt/decrypt
messages

E.g., that’s how PGP/GPG and SSL work…

21

RSA

Ron Rivest, Adi Shamir, Leonard Adleman
1977 all at MIT at the time1977 -- all at MIT at the time

Basic idea: a modular exponentiation-based
cipher where the modulus is the product of two
large primes

41

Security derived from conjectured difficulty of
factoring large composite integer into 2 or
more*, (also large) prime factors

S R A

42

22

RSA
Pick two large (about 512-bit and up) primes p and q

and compute n = p * q

Pi k d h th tPick e, d such that:
e * d = 1 mod φ(n)

where: φ(n) = (p-1) * (q-1)

(e, n) is the public key

43

(d, [p,q]) is the private key

Encrypt: C = Me mod n
Decrypt: M = Cd mod n

Example

p = 53, q = 61, n = 53 * 61 = 3233

Pick e = 71

Compute d such that
71 * d = 1 mod (52 * 60)
get d = 791

44

Let M = 1704

Encrypt: C = 170471 mod 3233 = 3106
Decrypt: M = 3106791 mod 3233 = 1704

23

Theory

Why φ(n) = (p-1) * (q-1)

φ(n) = # primes < n relatively prime to n
Consider the n=pq numbers 0, 1, ..., pq-1
All are relatively prime to n except for 0 and

p-1 elements: q, 2q, 3q, ..., (p-1)q
q-1 elements: p, 2p, 3p, ..., (q-1)p

45

q p, p, p, , (q)p

so φ(n) = pq - [(p-1) + (q-1) + 1]
= pq - p - q + 1 = (p-1)*(q-1)

Factoring
Given a number n, find primes p1, p2, ..., pk such that n = p1

* p2 * ... * pk

For RSA, there are known to be only 2 factors:
*n = p * q

Factoring arbitrary numbers is harder than factoring special
types of numbers, e.g., numbers of the form n = 2s - 1
(Mersenne primes)

Strength of RSA – relation to factoring

46

g g
1) If factoring easy breaking RSA is easy

find plaintext?
2) If breaking RSA is easy factoring made easy ?

Breaking RSA can be no harder than factoring, but could
be easier

24

Digital Signatures: Objectives

• Message integrity and authenticity
Goal: detect tamperingGoal: detect tampering

• Source/sender authenticity
Goal: detect forgeries

• Non-repudiation
Goal: sender cannot deny having signed a message

47

trusted 3rd party (court?) can resolve disputes

Public-Key Signatures

• Signer has a public-private key pair

• Signer generates a signature with the private key
– Only the real signer can do this

• A signature is verified with the public key
A d thi i l di th i t d d

48

– Anyone can do this, including the intended
recipient and a trusted 3rd third party, even adversary!

• No keys of the receiver/verifier are used

25

Sending a Signed Message

• Alice sends a signed message to Bob using her private key.
Bob validates with her public key

1) Alice Bob: (M, S) where
S = signApriv(h(M))
and h() is a “good” hash function

2) Bob checks: validateApub(M, S)

49

• Hash function h is public and not keyed, but:
– h() is hard to invert
– Practical examples: MD5, SHA

• S is function of entire message M

RSA Signatures
• Let (e, n) be Alice’s public key and (d, n) her

private key

• Alice Bob: (M, S) where
S = signApriv(h(M)) = [h(M)] d mod n

• Bob checks: validateApub(M, S):
1. h1 = h(M)

50

2. h2 = Se mod n
Note: Se = [h(M)] d*e mod n = h(M)

3. if h1 = h2 then accept, else reject

26

Digital Signature Standard (DSS)

• US FIPS PUB 186, adopted 1994
U i t f th d i t d b• Uses variant of methods invented by
ElGamal and Schnorr, which, in turn, are
loosely based on Diffie-Hellman

• Uses exponentiations in modular
arithmetic where security is based on

51

arithmetic where security is based on
difficulty of computing the discrete log (as
for DH)

• Uses SHA for hashing

DSS

• Global public values (shared by group which can
be as large as needed)

i b (512 1024 bit)p - prime number (512-1024 bits)
q - 160-bit value (most computation mod q)
g = h(p-1)/q mod p where h < (p-1) and g > 1

• User’s private key

52

x - any number less than q

• User’s public key
y = gx mod p

27

53

Notes
• Signing (can be) faster than in RSA

Verification is slower than with RSA• Verification is slower than with RSA

• Signature size: 320 (DSS) vs 1024 (RSA) bits

• Both RSA and DSS are used extensively --
many products/systems support both

54

y p y pp

• DSS not designed for encryption – use together
with Diffie-Hellman key exchange or El Gamal
PKCS

28

End of introduction

Questions?

55

